Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0006924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470268

RESUMO

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, is responsible for causing a wide variety of invasive infections. The emergence of multi-drug antibiotic resistance has prompted the search for antimicrobial alternatives. Phage-derived peptidoglycan hydrolases, known as endolysins, are an attractive alternative. In this study, an endolysin active against Spn, designated SP-CHAP, was cloned, produced, purified, biochemically characterized, and evaluated for its antimicrobial properties. Cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domains are widely represented in bacteriophage endolysins but have never previously been reported for pneumococcal endolysins. Here, we characterize the first pneumococcal endolysin with a CHAP catalytic domain. SP-CHAP was antimicrobial against all Spn serovars tested, including capsular and capsule-free pneumococci, and it was found to be more active than the most widely studied pneumococcal endolysin, Cpl-1, while not affecting various oral or nasal commensal organisms tested. SP-CHAP was also effective in eradicating Spn biofilms at concentrations as low as 1.56 µg/mL. In addition, a Spn mouse nasopharyngeal colonization model was employed, which showed that SP-CHAP caused a significant reduction in Spn colony-forming units, even more than Cpl-1. These results indicate that SP-CHAP may represent a promising alternative to combating Spn infections. IMPORTANCE: Considering the high rates of pneumococcal resistance reported for several antibiotics, alternatives are urgently needed. In the present study, we report a Streptococcus pneumoniae-targeting endolysin with even greater activity than Cpl-1, the most characterized pneumococcal endolysin to date. We have employed a combination of biochemical and microbiological assays to assess the stability and lytic potential of SP-CHAP and demonstrate its efficacy on pneumococcal biofilms in vitro and in an in vivo mouse model of colonization. Our findings highlight the therapeutic potential of SP-CHAP as an antibiotic alternative to treat Streptococcus pneumoniae infections.


Assuntos
Bacteriófagos , Infecções Pneumocócicas , Animais , Camundongos , Peptídeo Hidrolases , Streptococcus pneumoniae , Cisteína , Histidina , Amidoidrolases , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Bacteriófagos/genética , Biofilmes
2.
Fish Shellfish Immunol ; 145: 109296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104698

RESUMO

Streptococcus iniae, a zoonotic Gram-positive pathogen, poses a threat to finfish aquaculture, causing streptococcosis with an annual economic impact exceeding $150 million globally. As aquaculture trends shift towards recirculating systems, the potential for horizontal transmission of S. iniae among fish intensifies. Current vaccine development provides only short-term protection, driving the widespread use of antibiotics like florfenicol. However, this practice raises environmental concerns and potentially contributes to antibiotic resistance. Thus, alternative strategies are urgently needed. Endolysin therapy, derived from bacteriophages, employs hydrolytic endolysin enzymes that target bacterial peptidoglycan cell walls. This study assesses three synthetic endolysins (PlyGBS 90-1, PlyGBS 90-8, and ClyX-2) alongside the antibiotic carbenicillin in treating S. iniae-infected hybrid striped bass (HSB). Results demonstrate that ClyX-2 exhibits remarkable bacteriolytic potency, with lytic activity detected at concentrations as low as ∼15 µg/mL, approximately 8-fold more potent than the PlyGBS derivatives. In therapeutic effectiveness assessments, both carbenicillin and ClyX-2 treatments achieved significantly higher survival rates (85 % and 95 %, respectively) compared to placebo and PlyGBS-based endolysin treatments. Importantly, no statistical differences were observed between ClyX-2 and carbenicillin treatments. This highlights ClyX-2 as a promising alternative for combating S. iniae infections in aquaculture, offering potent bacteriolytic activity and high survival rates.


Assuntos
Bass , Endopeptidases , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Bass/microbiologia , Streptococcus , Streptococcus iniae , Antibacterianos , Carbenicilina
3.
Front Immunol ; 14: 1075774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781366

RESUMO

Bacteriolytic enzymes are promising antibacterial agents, but they can cause a typical immune response in vivo. In this study, we used a targeted modification method for two antibacterial endolysins, Pal and Cpl-1. We identified the key immunogenic amino acids, and designed and tested new, bacteriolytic variants with altered immunogenicity. One new variant of Pal (257-259 MKS → TFG) demonstrated decreased immunogenicity while a similar mutant (257-259 MKS → TFK) demonstrated increased immunogenicity. A third variant (280-282 DKP → GGA) demonstrated significantly increased antibacterial activity and it was not cross-neutralized by antibodies induced by the wild-type enzyme. We propose this variant as a new engineered endolysin with increased antibacterial activity that is capable of escaping cross-neutralization by antibodies induced by wild-type Pal. We show that efficient antibacterial enzymes that avoid cross-neutralization by IgG can be developed by epitope scanning, in silico design, and substitutions of identified key amino acids with a high rate of success. Importantly, this universal approach can be applied to many proteins beyond endolysins and has the potential for design of numerous biological drugs.


Assuntos
Antibacterianos , Formação de Anticorpos , Epitopos , Antibacterianos/farmacologia , Proteínas , Aminoácidos
4.
Biology (Basel) ; 12(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886987

RESUMO

Bacteriophage endolysins degrade the bacterial peptidoglycan and are considered enzymatic alternatives to small-molecule antibiotics. In particular, the multimeric streptococcal endolysin PlyC has appealing antibacterial properties. However, a comprehensive thermal analysis of PlyC is lacking, which is necessary for evaluating its long-term stability and downstream therapeutic potential. Biochemical and kinetic-based methods were used in combination with differential scanning calorimetry to investigate the structural, kinetic, and thermodynamic stability of PlyC and its various subunits and domains. The PlyC holoenzyme structure is irreversibly compromised due to partial unfolding and aggregation at 46 °C. Unfolding of the catalytic subunit, PlyCA, instigates this event, resulting in the kinetic inactivation of the endolysin. In contrast to PlyCA, the PlyCB octamer (the cell wall-binding domain) is thermostable, denaturing at ~75 °C. The isolation of PlyCA or PlyCB alone altered their thermal properties. Contrary to the holoenzyme, PlyCA alone unfolds uncooperatively and is thermodynamically destabilized, whereas the PlyCB octamer reversibly dissociates into monomers and forms an intermediate state at 74 °C in phosphate-buffered saline with each subunit subsequently denaturing at 92 °C. Adding folded PlyCA to an intermediate state PlyCB, followed by cooling, allowed for in vitro reconstitution of the active holoenzyme.

5.
mBio ; 14(5): e0213523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830812

RESUMO

IMPORTANCE: Lyme disease is a major tick-borne infection caused by a bacterial pathogen called Borrelia burgdorferi, which is transmitted by ticks and affects hundreds of thousands of people every year. These bacterial pathogens are distinct from other genera of microbes because of their distinct features and ability to transmit a multi-system infection to a range of vertebrates, including humans. Progress in understanding the infection biology of Lyme disease, and thus advancements towards its prevention, are hindered by an incomplete understanding of the microbiology of B. burgdorferi, partly due to the occurrence of many unique borrelial proteins that are structurally unrelated to proteins of known functions yet are indispensable for pathogen survival. We herein report the use of diverse technologies to examine the structure and function of a unique B. burgdorferi protein, annotated as BB0238-an essential virulence determinant. We show that the protein is structurally organized into two distinct domains, is involved in multiplex protein-protein interactions, and facilitates tick-to-mouse pathogen transmission by aiding microbial evasion of early host cellular immunity. We believe that our findings will further enrich our understanding of the microbiology of B. burgdorferi, potentially impacting the future development of novel prevention strategies against a widespread tick-transmitted infection.


Assuntos
Borrelia burgdorferi , Borrelia , Ixodes , Doença de Lyme , Carrapatos , Animais , Humanos , Camundongos , Evasão da Resposta Imune , Doença de Lyme/microbiologia , Borrelia burgdorferi/metabolismo , Carrapatos/microbiologia , Ixodes/microbiologia
6.
ACS Infect Dis ; 9(5): 1092-1104, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37126660

RESUMO

The rise of multi-drug-resistant bacteria that cannot be treated with traditional antibiotics has prompted the search for alternatives to combat bacterial infections. Endolysins, which are bacteriophage-derived peptidoglycan hydrolases, are attractive tools in this fight. Several studies have already demonstrated the efficacy of endolysins in targeting bacterial infections. Endolysins encoded by bacteriophages that infect Gram-positive bacteria typically possess an N-terminal catalytic domain and a C-terminal cell-wall binding domain (CWBD). In this study, we have uncovered the molecular mechanisms that underlie formation of a homodimer of Cpl-1, an endolysin that targets Streptococcus pneumoniae. Here, we use site-directed mutagenesis, analytical size exclusion chromatography, and analytical ultracentrifugation to disprove a previous suggestion that three residues at the N-terminus of the CWBD are involved in the formation of a Cpl-1 dimer in the presence of choline in solution. We conclusively show that the C-terminal tail region of Cpl-1 is involved in formation of the dimer. Alanine scanning mutagenesis generated various tail mutant constructs that allowed identification of key residues that mediate Cpl-1 dimer formation. Finally, our results allowed identification of a consensus sequence (FxxEPDGLIT) required for choline-dependent dimer formation─a sequence that occurs frequently in pneumococcal autolysins and endolysins. These findings shed light on the mechanisms of Cpl-1 and related enzymes and can be used to inform future engineering efforts for their therapeutic development against S. pneumoniae.


Assuntos
Bacteriófagos , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Colina/metabolismo
7.
Int J Pharm ; 635: 122679, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36738804

RESUMO

Endolysins are bacteriophage-encoded enzymatic proteins that have great potential to treat multidrug-resistant bacterial infections. Bacteriophage endolysins Cpl-1 and ClyJ-3 have shown promising antimicrobial activity against Streptococcus pneumoniae, which causes pneumonia in humans. This is the first study to investigate the feasibility of spray-dried endolysins Cpl-1 and ClyJ-3 with excipients to produce inhalable powders. The two endolysins were individually tested with leucine and sugar (lactose or trehalose) for spray drying method followed by characterization of biological and physico-chemical properties. A complete loss of ClyJ-3 bioactivity was observed after atomization of the liquid feed solution(before the drying process), while Cpl-1 maintained its bioactivity in the spray-dried powders. Cpl-1 formulations containing leucine with lactose or trehalose showed promising physico-chemical properties (particle size, crystallinity, hygroscopicity, etc.) and aerosol performances (fine particle fraction values above 65%). The results indicated that endolysin Cpl-1 can be formulated as spray dried powders suitable for inhaled delivery to the lungs for the potential treatment of pulmonary infections.


Assuntos
Bacteriófagos , Pneumonia , Humanos , Pós/química , Química Farmacêutica/métodos , Lactose/química , Bacteriófagos/química , Leucina/química , Trealose/química , Aerossóis e Gotículas Respiratórios , Tamanho da Partícula , Administração por Inalação
8.
Antibiotics (Basel) ; 11(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884219

RESUMO

Endolysins are bacteriolytic enzymes derived from bacteriophages. They represent an alternative to antibiotics, since they are not susceptible to conventional antimicrobial resistance mechanisms. Since non-human proteins are efficient inducers of specific immune responses, including the IgG response or the development of an allergic response mediated by IgE, we evaluated the general immunogenicity of the highly active antibacterial enzyme, PlyC, in a human population and in a mouse model. The study includes the identification of molecular epitopes of PlyC. The overall assessment of potential hypersensitivity to this protein and PlyC-specific IgE testing was also conducted in mice. PlyC induced efficient IgG production in mice, and the molecular analysis revealed that PlyC-specific IgG interacted with four immunogenic regions identified within the PlyCA subunit. In humans, approximately 10% of the population demonstrated IgG reactivity to the PlyCB subunit only, which is attributed to cross-reactions since this was a naïve serum. Of note, in spite of being immunogenic, PlyC induced a normal immune response, without hypersensitivity, since both the animals challenged with PlyC and in the human population PlyC-specific IgE was not detected.

9.
Infect Immun ; 90(5): e0005922, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35416705

RESUMO

The Borrelia burgdorferi BB0323 protein undergoes a complex yet poorly defined proteolytic maturation event that generates N-terminal and C-terminal proteins with essential functions in cell growth and infection. Here, we report that a borrelial protease, B. burgdorferi high temperature requirement A protease (BbHtrA), cleaves BB0323 between asparagine (N) and leucine (L) at positions 236 and 237, while the replacement of these residues with alanine in the mutant protein prevents its cleavage, despite preserving its normal secondary structure. The N-terminal BB0323 protein binds BbHtrA, but its cleavage site mutant displays deficiency in such interaction. An isogenic borrelial mutant with NL-to-AA substitution in BB0323 (referred to as Bbbb0323NL) maintains normal growth yet is impaired for infection of mice or transmission from infected ticks. Notably, the BB0323 protein is still processed in Bbbb0323NL, albeit with lower levels of mature N-terminal BB0323 protein and multiple aberrantly processed polypeptides, which could result from nonspecific cleavages at other asparagine and leucine residues in the protein. The lack of infectivity of Bbbb0323NL is likely due to the impaired abundance or stoichiometry of a protein complex involving BB0238, another spirochete protein. Together, these studies highlight that a precise proteolytic event and a particular protein-protein interaction, involving multiple borrelial virulence determinants, are mutually inclusive and interconnected, playing essential roles in the infectivity of Lyme disease pathogens.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Asparagina/metabolismo , Proteínas de Bactérias/metabolismo , Leucina/metabolismo , Doença de Lyme/metabolismo , Camundongos , Peptídeo Hidrolases/metabolismo , Proteólise , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
Sci Rep ; 12(1): 2061, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136138

RESUMO

Four tailspike proteins (TSP1-4) of Escherichia coli O157:H7 bacteriophage CBA120 enable infection of multiple hosts. They form a branched complex that attaches to the tail baseplate. Each TSP recognizes a different lipopolysaccharide on the membrane of a different bacterial host. The 335 N-terminal residues of TSP4 promote the assembly of the TSP complex and anchor it to the tail baseplate. The crystal structure of TSP4-N335 reveals a trimeric protein comprising four domains. The baseplate anchor domain (AD) contains an intertwined triple-stranded ß-helix. The ensuing XD1, XD2 and XD3 ß-sheet containing domains mediate the binding of TSP1-3 to TSP4. Each of the XD domains adopts the same fold as the respective XD domains of bacteriophage T4 gp10 baseplate protein, known to engage in protein-protein interactions via its XD2 and XD3 domains. The structural similarity suggests that XD2 and XD3 of TSP4 also function in protein-protein interactions. Analytical ultracentrifugation analyses of TSP4-N335 and of domain deletion proteins showed how TSP4-N335 promotes the formation of the TSP quaternary complex. TSP1 and TSP2 bind directly to TSP4 whereas TSP3 binding requires a pre-formed TSP4-N335:TSP2 complex. A 3-dimensional model of the bacteriophage CBA120 TSP complex has been developed based on the structural and ultracentrifuge information.


Assuntos
Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli O157/virologia , Genoma Viral/genética , Glicosídeo Hidrolases/metabolismo , Proteínas da Cauda Viral/metabolismo , Cristalografia por Raios X , Interações entre Hospedeiro e Microrganismos/fisiologia , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ultracentrifugação
11.
Front Microbiol ; 12: 752282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759903

RESUMO

Introduction: Increasing number of deaths from multi-drug resistant bacterial infections has caused both the World Health Organization and the Centers for Disease Control and Prevention to repeatedly call for development of new, non-traditional antibacterial treatments. Antimicrobial enzymes, including those derived from bacteriophages, known as endolysins or enzybiotics, are considered promising solutions among the emerging therapies. These naturally occurring proteins specifically destroy bacterial cell walls (peptidoglycan) and as such, are capable of killing several logs of bacteria within minutes. Some endolysins cause lysis of a wide range of susceptible bacteria, including both Gram-positive and Gram-negative organisms, whereas other endolysins are species- or even strain-specific. To make wide use of endolysins as antibacterial agents, some basic research issues remain to be clarified or addressed. Currently available methods for testing endolysin kinetics are indirect, require large numbers of bacteria, long incubation times and are affected by technical problems or limited reproducibility. Also, available methods are focused more on enzymatic activity rather than killing efficiency which is more relevant from a medical perspective. Results: We show a novel application of a DNA dye, SYTOX Green. It can be applied in comprehensive, real-time and rapid measurement of killing efficiency, lytic activity, and susceptibility of a bacterial population to lytic enzymes. Use of DNA dyes shows improved reaction times, higher sensitivity in low concentrations of bacteria, and independence of bacterial growth. Our data show high precision in lytic activity and enzyme efficiency measurements. This solution opens the way to the development of new, high throughput, precise measurements and tests in variety of conditions, thus unlocking new possibilities in development of novel antimicrobials and analysis of bacterial samples.

12.
Proteins ; 89(12): 1633-1646, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449113

RESUMO

Critical assessment of structure prediction (CASP) conducts community experiments to determine the state of the art in computing protein structure from amino acid sequence. The process relies on the experimental community providing information about not yet public or about to be solved structures, for use as targets. For some targets, the experimental structure is not solved in time for use in CASP. Calculated structure accuracy improved dramatically in this round, implying that models should now be much more useful for resolving many sorts of experimental difficulties. To test this, selected models for seven unsolved targets were provided to the experimental groups. These models were from the AlphaFold2 group, who overall submitted the most accurate predictions in CASP14. Four targets were solved with the aid of the models, and, additionally, the structure of an already solved target was improved. An a posteriori analysis showed that, in some cases, models from other groups would also be effective. This paper provides accounts of the successful application of models to structure determination, including molecular replacement for X-ray crystallography, backbone tracing and sequence positioning in a cryo-electron microscopy structure, and correction of local features. The results suggest that, in future, there will be greatly increased synergy between computational and experimental approaches to structure determination.


Assuntos
Biologia Computacional/métodos , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Conformação Proteica , Software
13.
Biochem J ; 478(12): 2385-2397, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34096588

RESUMO

Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.


Assuntos
Bacteriófagos/fisiologia , Carboidratos/fisiologia , Enzimas/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Virais/metabolismo , Carboidratos/química , Domínio Catalítico , Parede Celular/química , Parede Celular/metabolismo , Enzimas/genética , Hidrólise , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Proteínas Virais/genética
14.
Mol Microbiol ; 116(2): 397-415, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33756056

RESUMO

Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized. Here we report for the first time, that the polyrhamnose backbone of the Group A streptococcal cell wall is the binding target of PlyC. We have also characterized the putative rhamnose binding groove of PlyC and found four key residues that were critical to either the folding or the cell wall binding action of PlyC. Based on our results, we suggest that the interaction between PlyC and the cell wall may not be a high-affinity interaction as previously proposed, but rather a high avidity one, allowing for PlyC's remarkable lytic activity. Resistance to our current antibiotics is reaching crisis levels and there is an urgent need to develop the antibacterial agents with new modes of action. A detailed understanding of this potent endolysin may facilitate future developments of PlyC as a tool against the rise of antibiotic resistance.


Assuntos
Bacteriófagos/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Ramnose/metabolismo , Streptococcus pyogenes/virologia , Bacteriófagos/genética , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Endopeptidases/genética , Simulação de Acoplamento Molecular , Ligação Proteica/fisiologia , Streptococcus pyogenes/metabolismo
15.
Curr Opin Biotechnol ; 68: 213-220, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33529969

RESUMO

The decline in new antibiotic candidates combined with an increase in antibiotic-resistance necessitates development of alternative antimicrobials. Bacteriophage-encoded endolysins (lysins) are a class of peptidoglycan hydrolases that have been proposed to fill this antimicrobial void. The past 20 years has seen a dramatic expansion of studies on endolysin discovery, structure/function, engineering, immunogenicity, toxicity/safety, and efficacy in animal models. These collective efforts have led to current human clinical trials on at least three different endolysins that are antimicrobial toward staphylococcal species. It can be anticipated that endolysins targeting streptococcal species may be next in line for translational development. Notably, streptococcal diseases largely manifest at accessible mucous membranes, which should be beneficial for protein therapeutics. Additionally, there are a number of well-identified streptococcal diseases in both humans and animals that are associated with a single species, further favoring a targeted endolysin therapeutic.


Assuntos
Bacteriófagos , Animais , Antibacterianos/uso terapêutico , Endopeptidases , Humanos
16.
Antibiotics (Basel) ; 9(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961696

RESUMO

Bovine mastitis, an infection of the cow's mammary gland, is frequently caused by Streptococcus uberis and causes major economic losses in the dairy industry. The intramammary administration of antibiotics currently remains the predominant preventive and therapeutic measure. These antimicrobial compounds, of which some are considered critical in human health care, are frequently applied as dry therapy resulting in their consistent overuse. Therefore, the use of antibiotics in the dairy sector is being questioned. We here identified two endolysins, i.e., PlySs2 and PlySs9, respectively derived from Streptococcus suis serotype-2 and -9 prophages, with lytic activity against S. uberis in an in vitro setting. Both endolysins gave clear lysis zones in spot-on-plate assays and caused a reduction of the optical density in a turbidity reduction assay. In depth characterization identified PlySs9 as the more potent endolysin over PlySs2 with a lower MIC value and about one additional log of killing. PlySs2 and PlySs9 were challenged to a panel of subclinical and clinical S. uberis milk isolates and were both able to lyse all strains tested. Molecular dissection of these endolysins in catalytic and cell wall binding subdomains resulted in major loss of killing and binding activity, respectively. Taken together, we here propose PlySs2 and PlySs9 as candidate compounds to the current antimicrobial arsenal known against bovine mastitis-causing S. uberis as future add-on or replacement strategy to the currently used intramammary antibiotics.

17.
Sci Rep ; 10(1): 15402, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958885

RESUMO

The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.


Assuntos
Bacteriófagos/genética , Escherichia coli O157/genética , Proteínas da Cauda Viral/ultraestrutura , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidade , Domínio Catalítico , Escherichia coli O157/metabolismo , Glicosídeo Hidrolases , Especificidade da Espécie , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion
18.
Artigo em Inglês | MEDLINE | ID: mdl-31767724

RESUMO

Streptococcus pneumoniae is a leading human pathogen uniquely characterized by choline moieties on the bacterial surface. Our previous work reported a pneumococcus-specific chimeric lysin, ClyJ, which combines the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) enzymatically active domain (EAD) from the PlyC lysin and the cell wall binding domain (CBD) from the phage SPSL1 lysin, which imparts choline binding specificity. Here, we demonstrate that the lytic activity of ClyJ can be further improved by editing the linker sequence adjoining the EAD and CBD. Keeping the net charge of the linker constant, we constructed three ClyJ variants containing different lengths of linker sequence. Circular dichroism showed that linker editing has only minor effects on the folding of the EAD and CBD. However, thermodynamic examination combined with biochemical analysis demonstrated that one variant, ClyJ-3, with the shortest linker, displayed improved thermal stability and bactericidal activity, as well as reduced cytotoxicity. In a pneumococcal mouse infection model, ClyJ-3 showed significant protective efficacy compared to that of the ClyJ parental lysin or the Cpl-1 lysin, with 100% survival at a single ClyJ-3 intraperitoneal dose of 100 µg/mouse. Moreover, a ClyJ-3 dose of 2 µg/mouse had the same efficacy as a ClyJ dose of 40 µg/mouse, suggesting a 20-fold improvement in vivo Taking these results together, the present study not only describes a promising pneumococcal lysin with improved potency, i.e., ClyJ-3, but also implies for the first time that the linker sequence plays an important role in determining the activity of a chimeric lysin, providing insight for future lysin engineering studies.


Assuntos
Antituberculosos/farmacologia , Edição de Genes/métodos , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Animais , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Domínio Catalítico/genética , Parede Celular/metabolismo , Colina/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Engenharia de Proteínas , Fagos de Streptococcus , Relação Estrutura-Atividade
19.
Antibiotics (Basel) ; 8(3)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546935

RESUMO

Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.

20.
Antibiotics (Basel) ; 8(2)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142020

RESUMO

Bacteriophage endolysins, enzymes that degrade the bacterial peptidoglycan (PG), have gained an increasing interest as alternative antimicrobial agents, due to their ability to kill antibiotic resistant pathogens efficiently when applied externally as purified proteins. Typical endolysins derived from bacteriophage that infect Gram-positive hosts consist of an N-terminal enzymatically-active domain (EAD) that cleaves covalent bonds in the PG, and a C-terminal cell-binding domain (CBD) that recognizes specific ligands on the surface of the PG. Although CBDs are usually essential for the EADs to access the PG substrate, some EADs possess activity in the absence of CBDs, and a few even display better activity profiles or an extended host spectrum than the full-length endolysin. A current hypothesis suggests a net positive charge on the EAD enables it to reach the negatively charged bacterial surface via ionic interactions in the absence of a CBD. Here, we used the PlyC CHAP domain as a model EAD to further test the hypothesis. We mutated negatively charged surface amino acids of the CHAP domain that are not involved in structured regions to neutral or positively charged amino acids in order to increase the net charge from -3 to a range from +1 to +7. The seven mutant candidates were successfully expressed and purified as soluble proteins. Contrary to the current hypothesis, none of the mutants were more active than wild-type CHAP. Analysis of electrostatic surface potential implies that the surface charge distribution may affect the activity of a positively charged EAD. Thus, we suggest that while charge should continue to be considered for future engineering efforts, it should not be the sole focus of such engineering efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA